

Thermochimica Acta 362 (2000) 153-160

thermochimica acta

www.elsevier.com/locate/tca

Isobaric vapour–liquid equilibrium of binary mixtures of some cyclic ethers with chlorocyclohexane at 40.0 and 101.3 kPa

S. Rodríguez^a, H. Artigas^b, C. Lafuente^b, A.M. Mainar^b, F.M. Royo^{b,*}

^aDepartamento de Física Aplicada, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

^bDepartamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

Received 28 February 2000; accepted 29 June 2000

Abstract

Isobaric vapour–liquid equilibrium data for the binary systems formed by tetrahydrofuran, tetrahydropyran, 2-methyltetrahydrofuran, and 2,5-dimethyl-tetrahydrofuran with chlorocyclohexane have been measured at 40.0 and 101.3 kPa using a dynamic recirculating still. All experimental data were checked for thermodynamic consistency by means of the Van Ness method. The systems studied present slightly deviations from ideal behaviour. None of them show azeotrope. The VLE data have been satisfactorily correlated with the equations of Wilson, NRTL and UNIQUAC. Predictions with the ASOG and UNIFAC group contribution methods are included. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Experimental VLE; Cyclic ethers; Chlorocyclohexane; ASOG; UNIFAC

1. Introduction

Recently, our interest has been directed towards the study of thermodynamic and transport properties of mixtures containing cyclic ethers with chlorine derivatives [1–4]. Continuing this line, in the present paper we report the isobaric vapour–liquid equilibrium data for mixtures of tetrahydrofuran, tetrahydropyran, 2-methyl-tetrahydrofuran, and 2,5-dimethyl-tetrahydrofuran with chlorocyclohexane at two pressures, 40.0 and 101.3 kPa. It is well-known the importance of the availability of accurate VLE data, as well in developing and evaluating predictive liquid-phase activity coefficients models (ASOG, UNIFAC...) as in many

fax: +34-976-76-1202.

E-mail address: femer@posta.unizar.es (F.M. Royo).

industrial processes (distillation, liquid–liquid extraction). In previous papers we have collected experimental information about the following functional groups: aromatic carbon; cyclic ether and chlorine. Then, the objective of this work is both to enlarge the experimental information and to show the different behaviour exhibited by the chlorinated derivative of either cyclohexane or benzene.

Experimental (P, T, x_i, y_i) data for these systems are not available in literature.

2. Experimental

2.1. Materials

The liquids used, all supplied by Aldrich, were the following: tetrahydrofuran (purity better than

^{*}Corresponding author. Tel.: +34-976-76-1203;

^{0040-6031/00/\$ –} see front matter \odot 2000 Elsevier Science B.V. All rights reserved. PII: $S\,0\,0\,4\,0\,-\,6\,0\,3\,1\,(0\,0\,)\,0\,0\,5\,8\,0\,-\,3$

Nomenclature

Symbols

Symbols	
A_{12}, A_{21}	adjustable parameters for VLE correla-
	tion equations
B_{ii}	second virial coefficient of component
	$i (\mathrm{m^3 mol^{-1}})$
B_{ii}	cross second virial coefficient
5	$(m^3 mol^{-1})$
F	objective function
Ν	number of experimental data
Р	total pressure (Pa)
p_i^0	vapour pressure of component i (Pa)
R	gas constant (= $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)
Т	temperature (K)
$T_{\rm b}$	normal boiling point (K)
V_i^0	molar volume of component i
	$(m^3 mol^{-1})$
X_i	mole fraction of component i in the
	liquid phase
<i>y</i> _i	mole fraction of component i in the
	vapour phase
r_i, q_i	van der Waals parameters
~	
Greek lette	ers
α_{12}	nonrandomness parameter in the NRTL
	equation
Δ	average deviation
γ_i	activity coefficient of component i
γ_i^∞	activity coefficient of component i at
	infinite dilution
ho	density (kg m^{-3})
Subanizta	
Subscripts	· · · · ·
ı	component <i>i</i>
Superscrip	ots
cal	calculated quantity
exptl	experimental quantity
-npu	enperantental quantity

99.8 mol%), and tetrahydropyran, 2-methyl-tetrahydrofuran, 2,5-dimethyl-tetrahydrofuran, and chlorocyclohexane (all better than 99.0 mol%). The purity of chemicals was tested by gas–liquid chromatography, confirming the absence of other significant organic components, so they were employed without further purification.

2.2. Measurements

The still and procedure have been described elsewhere [5]. The apparatus employed to study vapour-liquid equilibrium was an all-glass dynamic recirculating still Labodest model equipped with a Cottrell pump. The thermometer used for measuring the equilibrium temperatures was a model F25 from Automatic Systems Laboratories. The pressure was taken with a pressure transducer Druck PDCR 110/W. The experimental error in temperature is ± 0.01 K, and in pressure the accuracy is ± 0.1 kPa.

When equilibrium was reached, samples of liquid and vapour-condensated phase were taken, and their densities analysed at 298.15 K with an Anton Paar DMA-58 vibrating tube densimeter. The density-calibration curves for all systems studied were obtained by Rodríguez et al. [2]. The experimental uncertainty in both liquid- and vapour-phase mole fractions is estimated in ± 0.0001 .

The correct running of the different devices and the purity of liquids were checked again by measuring the normal boiling points and the densities for the pure compounds. The results are listed in Table 1, and compared with those found in literature [6-10].

3. Results and discussion

Table 2 gathers vapour–liquid equilibrium data (T, x_1 , y_1), together with the calculated activity coefficients at 40.0 and 101.3 kPa. The activity coefficients of the components, γ_i , were calculated taking into account the non-ideality of the vapour-phase, using the equations:

$$y_{i} = \frac{y_{i}P}{x_{i}p_{i}^{0}} \exp\left[\frac{(B_{ii} - V_{i}^{0})(P - p_{i}^{0}) + (1 - y_{i})^{2}P\delta_{ij}}{RT}\right]$$
(1)

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{2}$$

In these equations, x_i and y_i are the liquid- and vapourphase compositions in equilibrium, P the total pressure, p_i^0 the pure component vapour-pressure, B_{ii} the second virial coefficient of the pure gas, B_{ij} the cross second virial coefficient, and V_i^0 the molar volume of the saturated liquid phase.

154

Table 1
Physical properties (densities at 298.15 K and normal boiling points) of the pure compounds

Compound	$\rho ~({\rm kg}~{\rm m}^{-3})$		$T_{\rm b}~({\rm K})$	<i>T</i> _b (K)		
	Exptl.	Lit.	Exptl.	Lit.		
Tetrahydrofuran	882.09	881.97 [6]	339.12	339.115 [9]		
Tetrahydropyran	879.15	879.16 [7]	361.17	361 [10]		
2-Methyl-tetrahydrofuran	849.90	848.82 [8]	352.94	353.1 [10]		
2,5-Dimethyl-tetrahydrofuran	825.27	_	365.08	365.65 [9]		
Chlorocyclohexane	993.23	-	415.76	-		

Table 2

Experimental VLE data at the indicated pressure

Table 2 (Continued)

Experimental VLE data at the indicated pressure			T (K)	x_1	V1	¥1	V2		
<i>T</i> (K)	<i>x</i> ₁	<i>y</i> ₁	γ1	γ2	Tetrahydro	powran(1) + chlo	procyclohexane	(2) at $101.3 k$	Pa
Tetrahvdro	furan(1)+chlo	rocyclohexane	(2) at 40.0 kPa	1	412.67	0.0376	0.1204	0.900	0.989
380.55	0.0138	0.1191	1.102	0.978	408.29	0.0811	0.2342	0.890	1.011
370.89	0.0572	0.3905	1.105	0.976	401.98	0.1685	0.4234	0.888	0.998
364.04	0.0959	0.5261	1.062	1.007	397.09	0.2383	0.5415	0.897	0.994
351.67	0.1879	0.7262	1.056	1.034	392.70	0.3000	0.6314	0.920	0.987
342.67	0.2889	0.8293	1.027	1.065	387.19	0.3938	0.7333	0.930	0.973
339.22	0.3391	0.8548	1.005	1.131	382.07	0.4790	0.8027	0.951	0.982
334.80	0.3956	0.8921	1.037	1.118	374.65	0.6431	0.9003	0.964	0.922
329.68	0.5040	0.9341	1.012	1.054	370.50	0.7404	0.9393	0.978	0.888
324.15	0.6375	0.9624	0.999	1.074	365.65	0.8587	0.9717	1.000	0.901
319.85	0.7599	0.9807	0.997	1.033	363.10	0.9324	0.9901	1.009	0.722
317.27	0.8597	0.9888	0.978	1.172					
314.99	0.9380	0.9956	0.984	1.176	2-Methyl-t	etrahydrofuran	(1)+chlorocyc	lohexane(2) a	t 40.0 kPa
					381.10	0.0184	0.1061	1.088	0.980
Tetrahydro	furan(1)+chlo	rocyclohexane	(2) at 101.3 kl	Pa	373.60	0.0759	0.3311	0.995	0.996
411.37	0.0151	0.1384	1.514	0.979	368.70	0.1246	0.4631	0.964	0.999
401.45	0.0673	0.3260	0.976	1.055	362.82	0.1858	0.5975	0.980	0.993
393.92	0.1045	0.4946	1.118	1.021	356.83	0.2586	0.7002	0.979	1.015
385.87	0.1598	0.6103	1.080	1.068	348.97	0.3770	0.8082	0.981	1.052
373.81	0.2846	0.7877	1.043	1.007	346.00	0.4445	0.8566	0.967	0.996
369.34	0.3412	0.8372	1.036	0.977	341.67	0.5251	0.8973	0.985	1.001
362.29	0.4518	0.8955	1.007	0.968	338.17	0.6001	0.9285	1.001	0.963
358.03	0.5179	0.9196	1.013	0.991	335.95	0.6716	0.9482	0.984	0.938
351.60	0.6467	0.9522	1.008	1.030	331.49	0.7938	0.9759	0.999	0.852
347.29	0.7598	0.9719	0.994	1.059	328.17	0.8906	0.9830	1.010	1.324
343.68	0.8590	0.9857	0.995	1.066	2-Mathyl-t	etrahydrofurar	$(1) \perp chlorocyc$	loherane(?) a	t
341.21	0.9380	0.9938	0.992	1.167	101.3 kPa	erranyarojaran	(1)⊤cnuorocyc	ionexune(2) u	ı
Tetrahydro	pyran(1)+chlo	orocyclohexane	(2) at 40.0 kP	а	412.13	0.0272	0.1188	1.036	0.994
379.87	0.0365	0.1384	0.911	1.001	405.23	0.0855	0.3080	0.984	0.996
375.20	0.0906	0.2970	0.890	1.008	401.19	0.1218	0.4028	0.984	1.000
369.77	0.1584	0.4570	0.908	1.012	393.99	0.1946	0.5436	0.974	1.023
364.89	0.2383	0.5900	0.895	1.003	387.97	0.2721	0.6555	0.964	1.022
360.63	0.3057	0.6821	0.914	0.996	381.00	0.3693	0.7501	0.961	1.063
355.45	0.3901	0.7732	0.949	0.984	376.32	0.4542	0.8199	0.960	1.030
349.89	0.5029	0.8519	0.966	0.981	371.91	0.5318	0.8690	0.974	1.012
343.90	0.6473	0.9183	0.985	0.975	368.68	0.5997	0.9005	0.975	1.005
340.29	0.7598	0.9563	0.988	0.893	365.57	0.6676	0.9272	0.981	0.988
337.14	0.8504	0.9761	1.006	0.901	360.08	0.7914	0.9660	1.004	0.897
335.01	0.9272	0.9908	1.011	0.784	356.98	0.8811	0.9830	1.003	0.884

Table 2	(Continued)
---------	------------	---

T (K)	<i>x</i> ₁	<i>y</i> ₁	γ1	γ_2			
2,5-Dimethyl-tetrahydrofuran(1)+chlorocyclohexane(2) ar							
40.0 kPa							
379.77	0.0380	0.1560	1.136	0.984			
374.22	0.0915	0.3274	1.141	0.995			
370.39	0.1396	0.4463	1.128	0.983			
364.67	0.2174	0.5825	1.106	0.992			
359.22	0.2914	0.6876	1.138	0.996			
353.91	0.3980	0.7825	1.110	0.993			
349.09	0.5019	0.8428	1.100	1.044			
344.79	0.6046	0.8957	1.113	1.034			
342.58	0.6952	0.9174	1.065	1.161			
340.70	0.7485	0.9418	1.081	1.071			
339.32	0.8484	0.9619	1.020	1.231			
338.17	0.9134	0.9727	0.996	1.620			
2,5-Dimetl	hyl-tetrahyd	rofuran(1)+cl	hlorocyclohe	xane(2) at			
101.3 kPa							
411.40	0.0442	0.1568	1.200	0.986			
406.51	0.0915	0.2926	1.196	0.991			
401.52	0.1574	0.4315	1.140	0.985			
395.46	0.2265	0.5548	1.164	0.997			
391.27	0.2944	0.6476	1.150	0.978			
384.61	0.4010	0.7432	1.134	1.027			
379.11	0.5179	0.8340	1.129	0.980			
374.79	0.6240	0.8811	1.105	1.035			
372.65	0.6876	0.9100	1.096	1.011			
369.07	0.8229	0.9491	1.050	1.138			
367.49	0.8786	0.9585	1.037	1.429			
367.02	0.9123	0.9721	1.026	1.351			

The Antoine equation has been used for calculating the p_i^0 . Antoine's constants for tetrahydrofuran were taken from Riddick et al. [10], for 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran were attained from TRC tables [9], for tetrahydropyran were obtained from our own vapour pressure measurements and those for chlorocyclohexane were taken from Gmehling et al. [11]. All of them are shown in

Table 3

Constants of Antoine's equation	for vapour	pressures	of the	pure
compounds (temperature in °C,	pressure in	kPa)		

Compound	Α	В	С
Tetrahydrofuran [9]	6.12142	1203.11	226.355
Tetrahydropyran	5.85520	1131.93	205.83
2-Methyl-tetrahydrofuran [9]	5.95009	1175.51	217.80
2,5-Dimethyl-tetrahydrofuran [9]	5.69272	1099.53	205.72
Chlorocyclohexane [11]	5.73540	1235.48	188.647

Table 3. The second virial coefficients B_{ii} have been estimated using the Redlich–Kwong equation [12]. The cross second virial coefficients, B_{ij} , have been calculated by means of the Amdur–Mason equation [13]. Finally, the molar volumes V_i^0 were calculated using the Yen and Woods method [14].

The thermodynamic consistency of the experimental data has been checked using the point-to-point method of Van Ness, described by Fredenslund et al. [15]. A third order Legendre polynomial has been used for the excess free energies. This test considers experimental data consistent if the mean absolute deviation between calculated and measured y_1 (Δy_1) is smaller than 0.01. All systems satisfy this condition, thus it can be considered that the experimental data are thermodynamically consistent. The results are reported in Table 4.

The activity coefficients have been correlated with the Wilson, NRTL and UNIQUAC equations [11]. As recommended by Renon and Prausnitz [16], the mixture nonrandomness parameter α_{12} in the NRTL equation was set as 0.3. The estimation of parameters for the three correlation equations is based on minimization of an objective function *F* which, for a binary system, is given by the expression:

$$F = \sum_{i=1}^{i=N} \left[\left(\frac{\gamma_1^{\text{exptl}} - \gamma_1^{\text{cal}}}{\gamma_1^{\text{exptl}}} \right)^2 + \left(\frac{\gamma_2^{\text{exptl}} - \gamma_2^{\text{cal}}}{\gamma_2^{\text{exptl}}} \right)^2 \right]_i$$
(3)

where γ_i are the corresponding activity coefficients and N the number of experimental data. The minimization of F has been done with a non-linear regression procedure [17].

Results of the thermodynamic consistency test, average deviation ΔP and Δy

Table 4

System	P (kPa)	ΔP (kPa)	Δy
Tetrahydrofuran+	40.0	0.7	0.0054
	101.3	2.4	0.0088
Tetrahydropyran+	40.0	0.5	0.0016
	101.3	1.1	0.0026
2-Methyl-tetrahydrofuran+	40.0	1.2	0.0047
	101.3	1.2	0.0019
2,5-Dimethyl-tetrahydrofuran+	40.0	0.6	0.0053
+Chlorocyclohexane	101.3	0.9	0.0047

Equation	4	<u>A</u>	AT (K)	Δ.ν.	.u∞	.u∞
Equation	A12	A21		Δy	1	12
Tetrahydrofuran(1)+chlorocyclohexane(2)	at 40.0 kPa				
Wilson	883.5723a	-503.1581^{a}	0.46	0.0066	1.10	1.16
NRT	152.6802a	193.6716 ^a	0.47	0.0063	1.11	1.14
UNIQUAC	-68.7249a	104.3476 ^a	0.49	0.0068	1.10	1.17
Tetrahydrofuran(1)+chlorocyclohexane(2)	at 101.3 kPa				
Wilson	2814.0678	-2166.1981	0.41	0.0094	1.17	1.07
NRTL	-1571.7782	2300.5535	0.43	0.0092	1.16	1.08
UNIQUAC	-1178.3952	1501.5248	0.50	0.0091	1.15	1.10
Tetrahydropyran(1)+chlorocyclohexane(2)	at 40.0 kPa				
Wilson	-1318.8832	1466.7000	0.30	0.0021	0.88	0.79
NRTL	2175.3694	-2193.9310	0.28	0.0021	0.88	0.80
UNIQUAC	1041.0813	-1091.5110	0.30	0.0027	0.90	0.77
Tetrahydropyran(1)+chlorocyclohexane(2)	at 101.3 kPa				
Wilson	-1691.5890	1948.6381	0.28	0.0020	0.86	0.75
NRTL	2749.0998	-2716.2580	0.27	0.0020	0.85	0.76
UNIQUAC	1682.4389	-1568.0163	0.27	0.0018	0.89	0.72
2-Methyl-tetrahyd	drofuran(1)+chlorocycloh	exane(2) at 40.0 kPa				
Wilson	-2154.6851	5165.0663	0.71	0.0070	0.99	1.58
NRTL	-1901.3131	2317.1870	0.29	0.0045	1.01	0.96
UNIQUAC	-1145.1566	1294.4927	0.33	0.0051	1.02	0.97
2-Methyl-tetrahyd	drofuran(1)+chlorocycloh	exane(2) at 101.3 kPa				
Wilson	-1005.1753	1213.9802	0.30	0.0058	0.95	0.92
NRTL	1919.4107	-1791.9842	0.29	0.0059	0.95	0.92
UNIQUAC	1703.4746	-1470.8674	0.18	0.0049	0.98	0.88
2,5-Dimethyl-tetr	ahydrofuran(1)+chlorocyd	clohexane(2) at 40.0 kPa				
Wilson	-2040.2995	5351.0695	0.56	0.0074	1.21	2.35
NRTL	6131.2791	-2978.1951	0.51	0.0072	1.16	2.07
UNIQUAC	3418.1197	-2006.4920	0.60	0.0092	1.24	2.10
2,5-Dimethyl-tetr	ahydrofuran(1)+chlorocyd	clohexane(2) at 101.3 kPa	ı			
Wilson	-2378.2621	6202.4909	0.19	0.0036	1.17	2.39
NRTL	6151.5724	-3154.6825	0.31	0.0046	1.14	1.83
UNIQUAC	3846.0756	-2245.8683	0.26	0.0028	1.21	2.09

Correlation parameters, average deviations ΔT and Δy , and activity coefficients at infinite dilution

^a Joules per mole.

Table 5

The adjustable parameters A_{12} and A_{21} and the average deviations (ΔT and Δy), along with the activity coefficients at infinite dilution are listed in Table 5. All systems yield similar deviations in both *T* and *y*. The greatest value for ΔT is 0.7 K and corresponds to the mixture 2-methyl-tetrahydrofuran+chlorocyclohexane at 40.0 kPa. For Δy , the values are <0.01 and the biggest is obtained for the system tetrahydrofuran+chlorocyclohexane at 101.3 kPa. It can be concluded that all equations show a good performance in correlating the activity coefficients.

The $T-x_1-y_1$ diagrams were obtained by employing the NRTL equation. They are graphically represented in Figs. 1–4, together with experimental VLE data. These diagrams are indicative that there does not exist azeotropic behaviour. The calculations confirm this observation.

The four studied systems behave near ideality at both pressures, so near in fact that only mixtures containing tetrahydropyran and 2,5-dimethyl-tetrahydrofuran show a definite behaviour. The first ones deviate negatively from ideality while the second

Fig. 1. $T_{-x_1-y_1}$ diagram for tetrahydrofuran(1)+chlorocyclohexane(2): (\bigcirc, \bigoplus) exptl. data at 40.0 kPa; (\square, \blacksquare) exptl. data at 101.3 kPa; (—) Wilson equation.

mixtures do it positively. These results can be explained considering that the specific interaction Cl–O(ether) existent in the mixture is strong enough to compensate the breaking of the interactions present in the pure liquids (mainly, the dipole–dipole ones). It must be pointed out that other effects, especially those relationed with the branching of the cyclic ether, are important, too.

It is also interesting a comparison between these results and those obtained for systems in which the same cyclic ethers are mixed with chlorobenzene [4]. Excepting tetrahydropyran, the deviations from Raoult's Law are more positive in the case of the mixture with the cyclohexane derivative. This is a result to be expected. On the one hand, the specific π -O(ether) interaction is eliminated. On the other hand, the aliphatic cycle has not the rigid structure of the aromatic ring and therefore hinders in a greater extension the possible interactions. The behaviour of mixtures containing tetrahydropyran is similar with both aliphatic and aromatic derivatives. This could be due

Fig. 2. $T-x_1-y_1$ diagram for tetrahydropyran(1)+chlorocyclohexane(2): (\bigcirc, \bigoplus) exptl. data at 40.0 kPa; (\square, \blacksquare) exptl. data at 101.3 kPa; (—) Wilson equation.

to the fact that tetrahydropyran is the worst donor of all the ethers [18], then the π -O(ether) interaction is the weakest. Moreover, the accommodation of tetrahydropyran would be better in chlorocyclohexane than in chlorobenzene because ether and chlorocyclohexane have very similar structures.

4. VLE predictions

ASOG [19] and modified-UNIFAC [20] have been used to predict VLE. The van der Waals parameters r_i and q_i for the groups c-(CH₂–O–CH) and c-(CH–O– CH), necessary in the calculations for modified-UNI-FAC, are not available. Then this contribution method cannot be applied with systems involving 2-methyltetrahydrofuran and 2,5-dimethyl-tetrahydrofuran. In Table 6 are listed the average deviations in both *T* and *y* obtained applying these predictive methods. Both of them yield similar ΔT and Δy , with especially satisfactory results for the mixtures containing tetrahydro-

Fig. 3. $T-x_1-y_1$ diagram for 2-methyl-tetrahydrofuran(1)+chlorocyclohexane(2) : (\bigcirc , \oplus) exptl. data at 40.0 kPa; (\square , \blacksquare) exptl. data at 101.3 kPa; (-) Wilson equation.

pyran. For the remaining cyclic ethers, the predictions present appreciably greater deviations. The working pressure scarcely affects to the predicted results.

When these values are compared with those obtained for the mixtures chlorobenzene+cyclic ethers [4], it can be seen that the values of ΔT and Δy are bigger in the case of the cyclohexane derivative

Table 6 VLE predictions, average deviations ΔT and Δy

Fig. 4. $T_{-x_1-y_1}$ diagram for 2,5-dimethyl-tetrahydrofuran(1)+chlorocyclohexane(2): (\bigcirc, \bullet) exptl. data at 40.0 kPa; (\square, \blacksquare) exptl. data at 101.3 kPa; (—) Wilson equation.

for both of the group contribution methods. At sight of this, it seems necessary to achieve more experimental information in order to enlarge the available database and, in this way, to revise and improve the existing interaction parameters in mixtures that present either specific interactions (Cl–O this time) or great differences between the boiling points.

System	P (kPa)	Modified-UNIFAC		ASOG	
		ΔT (K)	Δy	ΔT (K)	Δy
Tetrahydrofuran+	40.0	0.97	0.0151	0.63	0.0099
	101.3	0.34	0.0076	0.28	0.0064
Tetrahydropyran+	40.0	0.34	0.0047	0.72	0.0082
	101.3	0.27	0.0036	0.23	0.0013
2-Methyl-tetrahydrofuran+	40.0	_	_	1.88	0.0171
	101.3	_	_	0.54	0.0040
2,5-Dimethyl-tetrahydrofuran+	40.0	_	_	0.54	0.0053
+Chlorocyclohexane	101.3	-	-	0.78	0.0088

Acknowledgements

The authors are grateful for financial assistance from Universidad de Zaragoza (Proyecto UZ: 96-232-47) and Diputación General de Aragón (Proyecto PCB-0894).

References

- S. Rodríguez, C. Lafuente, J.A. Carrión, F.M. Royo, J.S. Urieta, Int. J. Thermophys. 17 (1996) 1281–1288.
- [2] S. Rodríguez, C. Lafuente, P. Cea, F.M. Royo, J.S. Urieta, J. Chem. Eng. Data 42 (1997) 1285–1289.
- [3] S. Rodríguez, C. Lafuente, H. Artigas, F.M. Royo, J.S. Urieta, J. Chem. Thermodyn. 31 (1999) 139–149.
- [4] S. Rodríguez, H. Artigas, J. Pardo, F.M. Royo, J.S. Urieta, Thermochim. Acta 336 (1999) 85–92.
- [5] H. Artigas, C. Lafuente, M.C. López, F.M. Royo, J.S. Urieta, Fluid Phase Eq. 134 (1997) 163–174.
- [6] O. Kiyohara, P.J. D'Arcy, G. Benson, Can. J. Chem. 57 (1979) 1006–1010.
- [7] A. Inglese, J.P.E. Grolier, E. Wilhelm, J. Chem. Eng. Data 28 (1983) 124–127.
- [8] L. De Lorenzi, M. Fermeglia, G. Torriano, J. Chem. Eng. Data 40 (1995) 1172–1177.

- [9] TRC-Tables, Selected values of properties of chemical compounds, Thermodynamic Research Center Data Project, Texas A&M University, College Station, TX, 1972, p. k-6170.
- [10] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic solvents, Physical properties and methods of purification, Techniques of Chemistry, Vol. II, fourth ed., Wiley, New York, 1986, pp. 309, 311, 314, 480.
- [11] J. Gmehling, U. Onken, W. Arlt, Vapor–liquid equilibrium data collection, Vol. I, Part 6a, Dechema Chemistry Data Series, Frankfurt/Main, 1980, pp. xx–xxiv, 258.
- [12] O. Redlich, J.N.S. Kwong, Chem. Rev. 44 (1949) 233– 244.
- [13] I. Amdur, E.A. Mason, Phys. Fluids 1 (1958) 370-383.
- [14] L.C. Yen, S.S. Woods, AIChE J. 14 (1968) 95-99.
- [15] A. Fredenslund, J. Gmehling, P. Rasmussen, Vapor–liquid equilibria using UNIFAC, Elsevier, Amsterdam, 1977, pp. 68– 73.
- [16] H. Renon, J.M. Prausnitz, AIChE. J. Elsevier 14 (1968) 135– 144.
- [17] J.A. Nelder, R.A. Mead, Comput. J. 7 (1965) 308-313.
- [18] S. Searles, M. Tamres, J. Am. Chem. Soc. 73 (1951) 3704– 3706.
- [19] K. Tochigi, D. Tiegs, J. Gmehling, K. Kojima, J. Chem. Eng. Jpn. 23 (1990) 453–463.
- [20] J. Gmehling, J. Li, M. Schiller, Ind. Eng. Chem. Res. 32 (1993) 178–193.